
Time Warping
for

Propagation Analysis

Open Source Hardware Engineering

Spring, 2020

When analyzing data related to radio wave propagation, it is sometimes of
interest to align the data to coincide with events such as sunrise and sunset.
As a case in point, about five months worth of signal readability on the
West coast of the U.S. data was available for time signal broadcast by NIST
station WWVB on 60kHz. Plotting the data by UTC hour showed a possible
correlation of poor reception with sunrise and sunset. The problem is that
sunrise and sunset don’t occur at the same UTC hour every day. Plotting
data versus UTC time will therefore smear out over any correlations when
the data covers a period of five months.

As an experiment, each day’s worth of reception data was individually
shifted so that either sunrise or sunset occurred at the same time. This
required calculating the rise or set time for each day and shifting each day’s
data by a different amount.

This revealed obvious signal dropouts about 70 minutes before sunrise
and 20 minutes prior to sunset. This was still not ideal, as the data could
only be offset to align with sunrise or sunset events, but not both at the same
time.

What’s needed is a way to warp time throughout each individual day so
that sunrise and sunset always occur at the same point (e.g. sunrise always
at 6AM and sunset at 6PM). This warped time will be called mean time in
what follows1. The warping of time should meet these criteria:

• Times half-way between sunrise and sunset should remain the same.

• Sunrise and sunset should map to 6AM and 6PM respectively.

• What happens in between should be smooth.

Tangents

The answer to this was suggested by the concepts of true and eccentric
anomaly from the theory of elliptical orbits in astronomy. There, angles
are called anomalies for an unknown reason. Figure 1 shows an object (e.g.
a planet), P orbiting about the focus of an ellipse, F . The major axis goes
through that focus and the center C, and intersects the perihelion on the
right. A circle is circumscribed on the elliptical orbit, and the point P ′ is
where the vertical line from the major axis through P intersects this circle.

The true anomaly is the angle ν between perihelion and P as seen from
F . The eccentric anomaly is the angle from perihelion to P ′ as seen from the
center C. These definitions only involve angles, not times or velocities of the
orbiting object.

1Our terminology should not be confused with mean anomaly in astronomy; they are
entirely different things.

1

C F

P

P′

E ν

Figure 1: True and eccentric anomaly

The true and eccentric anomalies are equal at perihelion (ν = E = 0)
and aphelion (ν = E = π). When E = π/2 it can be seen that that ν will be
larger than E by an amount depending the eccentricity of the orbit. This can
provide the required mapping if we make the times halfway between sunrise
and sunset correspond to the true anomaly at perihelion and aphelion. The
mathematical expression for the relationship between anomalies is

tan
ν

2
=

√
1 + e

1− e
tan

E

2

Notice that the tangent of one angle is equal to the tangent of the other
multiplied by a scale factor. Because of the physical situation represented,
the scale factor is always larger than one.

The Solution

At this point, the analogy to orbital mechanics is dropped and the concept
of scaling the tangent of an angle is used to solve the problem at hand. The
scale factor will be designated β and it will multiply the tangent of the true
angle.

tan
E

2
= β tan

ν

2
, or E = 2 tan−1

(
β tan

ν

2

)
and β =

tanE/2

tan ν/2

With this mapping, angles of zero or π are unchanged. What’s left is
to choose β so that the true angles of sunrise and sunset (νr, νs) wind up
corresponding to eccentric angles E = ±π/2. Arbitrarily setting sunset to be

2

the positive angle, and knowing that it should map to a mean (i.e. eccentric)
angle of π/2,

β =
tan(π/4)

tan(νs/2)
= cot

νs
2

The Details

Usual 24-hour clock time will be called true time. It may be expressed in
any convenient time zone. The time warped such that sunrise and set always
occur at 6AM and 6PM will be called mean time. Similarly, angles will either
be referred to as being true or mean. In dealing with angles, all values are
taken modulo 2π such that a negative angle in the range {−π..0} is equivalent
to an angle in the range {π..2π}.

Variables in equations will have subscripts of r and s to refer to sunrise
and sunset respectively. An additional subscript, o will be added to represent
a time that has been offset to a different timezone. Other subscripts should
be obvious from the text.

Since times may be in any timezone they must be offset to make sunrise
and sunset occur equidistant from both 00:00 and 12:00 – these are equivalent
to the angles 0 and π. The first step is to change units from 24-hour clock
hours T to an angle in radians, ν.

νr =
π

12
Tr, and νs =

π

12
Ts

Times will now be referred to as angles with this change of units. The
next step is to offset the true angles so that sunrise and sunset are of equal
magnitude but opposite sign (modulo 2π), with sunset being positive. Since
midnight is the hour zero, it will be better to map things so that the angle
zero occurs at night instead of during daytime. The time offset will be the
angle halfway between sunset and sunrise, and for this we need the duration
of night:

δnight = (νr − νs) mod 2π

Where the mod function is understood to return the smallest positive
angle between zero and 2π. The halfway point between sunrise and sunset
in the original timezone will be called νref :

νref =

(
νs +

δnight
2

)
mod 2π

Now we reference all times to midnight, and the results are implicitly
converted modulo 2π here:

3

νro = νr − νref , and νso = νs − νref
These offset true times corresponding to sun rise and set events are now

equidistant from angle zero (midnight or νref). The scaling factor is now
determined from the positive angle (sunrise):

β = cot
νro
2

With these definitions, the mean time for any time of day in the original
time zones may now be computed as follows: First, convert the clock time
to a true, offset angle,

νo =
π

12
T − νref mod 2π,

and find the corresponding mean angle:

E = 2 tan−1
(
β tan

νo
2

)
,

Then convert from mean angle to mean time:

Tm =
12

π
E

This can all be summarized into this group of equations

νr =
π

12
Tr νs =

π

12
Ts

δnight = (νr − νs) mod 2π

νref =

(
νs +

δnight
2

)
mod 2π

νro = (νr − νref) mod 2π

β = cot νro

Tmean =
24

π
tan−1

(
β tan

[
πT

24
− νref

2

])

Tools Attached

There is a zip file attached to this PDF document containing scripts that will
run in Matlab or Octave which implement the mean time mapping described

4

above. This includes functions to calculate sunrise and sunset times. One
way to extract the attached zip file is with the pdftk utility. Various PDF
viewers may also offer the ability to extract attachments.

Using this command line with pdftk will unpack the zip file into the same
directory as the PDF file.

pdftk <input-PDF-filename> unpack_files

An Example

Figure 2 provides a demonstration of the benefits obtained from mapping
clock times to mean time. These are histograms showing the distribution of
time code reception errors throughout the day across a time span of about
five months. Data was taken from February through June in 2019 plus a few
days in March of 2020. The Y-axis is a count of the number of minutes for
which a valid data frame was not received, and each histogram bin is five
minutes wide.

Figure 2: Data viewed in local time versus mean time

In the top graph, data is plotted versus local hour2. There are peaks in

2UTC times have been shifted by the longitude of the test location.

5

the histogram representing a reduction in signal quality at sunrise and sunset
and at two other times during the day.

In the bottom graph, the times of missed frames have been converted to
mean time, with sunrise and sunset events at exactly 6AM and 6PM. Here,
there are very obvious drops in signal quality about 70 minutes prior to
sunrise and 20 minutes prior to sunset. These events are much more narrow
in time than is apparent from the local time perspective, and more significant
than the other two broad peaks during the day.

Reception is significantly improved for a couple of hours after sunrise,
and the timing and shape of this is somewhat obscured when viewed w.r.t.
local time.

The solar time difference between the test location (U.S. West coast) and
the transmitter in Colorado is a little over an hour, and the sunrise event is
occurring near the time of sunrise at the transmitter site.

6

JD.m

function t=JD(year, month, day)
%
% t=JD(year, month, day)
%
% computes the julian day at midnight on the indicated day
%
% from Meeus' classic "Astronomical Algorithms"
%
janfeb=find(month < 3);
if numel(janfeb) > 0
 month(janfeb)=month(janfeb)+12;
 year(janfeb)=year(janfeb)-1;
end

gregorian=find(year >= 1582);
if numel(gregorian > 0)
 a=floor(year/100);
 b=2-a+floor(a/4);
 mask=zeros(size(year));
 mask(gregorian)=1;
 b=b.*mask;
else
 b=0;
end

t1=floor(1461*(year+4716)/4);
t2=floor(306*(month+1)/10);

t=t1+t2+day+b-1524.5;

meanTime.m

function Tm=meanTime(Rise,Set,T)
%
% Tm=meanTime(Rise,Set,T)
%
% All inputs are in hours of a 24-hour clock
%
vr=pi/12*Rise;
vs=pi/12*Set;
tp=2*pi;

vnight=mod(vr-vs+tp,tp);
vm=mod(vs+vnight/2,tp);

vr=mod(vr-vm+tp,tp);
vs=mod(vs-vm+tp,tp);

beta=cot(vr/2);

Tm=24/pi*atan(beta*tan(pi*T/24-vm/2));

siderialTime.m

function theta=siderialTime(JD)
%
% from Julian Day to siderial time in radians on the Greenwich meridian
%
jd2k=2451545.0;
t=(JD - jd2k)/36525.0;

a0=280.46061837;
%a1=360.98564736629 * 36525.0;
a1=13.185000770053742e6;
a2=387.933e-6;
a3=25.833118057349523e-9;
p=[a3,a2,a1,a0];

theta=mod(polyval(p,t),360)*pi/180;

solarPosition.m

function [asc,dec,az,el]=solarPosition(when,jd,lat,lon)
%
% [asc,dec,az,el]=solarPosition(when,jd,lat,lon)
%
% when is datenum, and if non-zero is used rather than jd.
% lat/lon in degrees
% returns right ascension and declination in radians
%
% See the classic "Astronimical Algorithms" by Meeus for details
%
if when > 0
 x=datevec(when);
 jd=JD(x(:,1),x(:,2),x(:,3))+(x(:,4)+(x(:,5)+x(:,6)/60)/60)/24;
end

t=(jd-2451545.0)./36525.0;
radPerDeg=pi/180.0;

L0=280.46646+(36000.76983+0.0003032*t).*t; %solar longitude
L0=mod(L0,360.0);

M=357.52911+(35999.05029+0.0001537*t).*t; % mean anomaly of sun
M=mod(M,360.0);

M=M*radPerDeg;
%
% equation of center for sun
%
C=(1.914602 - (0.004817 + 0.000014*t).*t) .* sin(M) + ...
 (0.019993 - 0.000101*t) .* sin(2*M) + ...
 0.000289 * sin(3*M);

trueLong=(L0+C)*radPerDeg;

% obliquity of the ecliptic

e0=23+(26+21.448/60)/60;
e1=-46.8150/3600;
e2=0.00059/3600;
e3=0.001813/3600;

e=(e0+(e1+(e2+e3*t).*t).*t);
e=e*radPerDeg;

asc=atan2(cos(e).*sin(trueLong),cos(trueLong));
asc=mod(asc,2*pi);

dec=asin(sin(e).*sin(trueLong));

phi=lat*radPerDeg;
L=-lon*radPerDeg;
theta=siderialTime(jd);
H=theta-L-asc;

num=sin(H);
den=cos(H).*sin(phi)-tan(dec)*cos(phi);
az=mod(atan2(num,den)+pi,2*pi);

sinel=sin(phi).*sin(dec)+cos(phi).*cos(dec).*cos(H);
k=find(sinel < -1);
sinel(k)=-1;
k=find(sinel > 1);
sinel(k)=1;

el=asin(sinel);

sunRiseTransitSet.m

function [rise,transit,set]=sunRiseTransitSet(year,month,day,lat,lon,tzhrs)
%
% [rise,transit,set]=sunRiseTransitSet(year,month,day,lat,lon,tzhrs)
%
% lat/lon are in degrees
%
% tzhrs is time zone offset relative to UTC, e.g. for PST, use -8
% for event times in UTC, set tzhrs = 0
%
% times returned are normal 24-hour clock time in hours, adjusted by tzhrs
%
% See the classic "Astronimical Algorithms" by Meeus for details
%
radPerDeg=pi/180;
hrsperrad=12/pi;
twopi=2.0*pi;
thetaPerDay=360.985647*radPerDeg;

jd=JD(year,month,day);
Theta=siderialTime(jd);
phi=lat*radPerDeg;
L=-lon*radPerDeg;
h0=-50/60*radPerDeg;
%
% first estimate of transit time
%
[asc,dec]=solarPosition(0,jd,lat,lon);
transit=mod((asc+L-Theta)/twopi,1);
%
% find actual position of sun at estimated transit
% and compute correction based on that
%
[asc,dec]=solarPosition(0,jd+transit,lat,lon);
theta=Theta+thetaPerDay*transit;
H=theta-L-asc;
if H > pi
 H=H-twopi;
end
correction=-H/twopi;
transit=transit+correction;
%
% First estimate of time between transit and rise/set is H0
%
cosH0=((sin(h0)-sin(phi).*sin(dec))./(cos(phi).*cos(dec)));
k=find(cosH0 < -1);
cosH0(k)=-1;
k=find(cosH0 > 1);
cosH0(k)=1;
H0=acos(cosH0)/twopi;
%
% find Sun position at estimated rise time and compute correction
%
rise=mod(transit-H0,1);

[asc,dec,az,el]=solarPosition(0,jd+rise,lat,lon);

theta=Theta+thetaPerDay*rise;
H=theta-L-asc;
if H > pi
 H=H-twopi;
end
correction=(el-h0)/(cos(dec)*cos(phi)*sin(H));
rise=mod(rise+correction/twopi,1);
%
% repeat for sunset estimate
%
set=mod(transit+H0,1);

[asc,dec,az,el]=solarPosition(0,jd+set,lat,lon);

theta=Theta+thetaPerDay*set;
H=theta-L-asc;
if H > pi
 H=H-twopi;
end
correction=(el-h0)/(cos(dec)*cos(phi)*sin(H));
set=mod(set+correction/twopi,1);
%
% convert from fractions of a day to hours and add
% time zone offset.
%
transit=mod(transit*24+tzhrs,24);
rise=mod(rise*24+tzhrs,24);
set=mod(set*24+tzhrs,24);

