
Self-Resonance Frequency
of

Single-Layer Air Core Solenoids

Open Source Hardware Engineering

Winter, 2020

Contents

1 Introduction 2

2 Simulation Details 8

3 Process Overview 11

4 Process Details 18

5 Accuracy 26

6 Useful Solenoids 30

A Mathematical Symbols 33

B Functions and Coefficients 35

C Dielectric Effects 38

D Bibliography 42

1

Chapter 1

Introduction

Nearly 500 electro-magnetic (E-M) simulations of air-core solenoids were used
to study their first self-resonance frequency (SRF) as a function of solenoid
geometry.

• Formulas have been developed which can predict simulated SRFs with
a typical accuracy of ±2%.

• Data from this effort compares favorably with published SRF measure-
ments of real solenoids.

• Some conclusions reached in previously published work are found to be
a result of sparse sampling of solenoid parameters. This study explored
a broader sample of the parameter space.

Motivation

This article describes a study of the SRF of wire-wound, air-core solenoids
(aka coils). Although there are many self resonances in a solenoid, the focus
here is with the first or lowest in frequency.

In many cases, knowledge of SRF for a specific coil is necessary so that
it can be avoided. Conversely, understanding the dependence of SRF on coil
geometry is helpful in designing solenoids. Operating frequencies are often
limited to some fraction of the SRF. From this perspective, the accuracy to
which the SRF need be known is not high. Errors in the range of 20-30%
might be entirely acceptable. That said, there has been a fair bit of research

2

into making more accurate predictions beginning in the late 19th century
and continuing through today.

There are other reasons for knowing about SRF. For example, some pub-
lished research concerns design of Tesla coil secondary and extra coils.

Scope

This study was limited to solenoids wound with bare wire in free space.
The use of insulated wire (other than perhaps magnet wire), or coil forms
alters the SRF. Only passing mention of these situations will be found in this
article.

Attaching wires to solenoid terminals for connection to various circuits
changes the SRF as well, and there is only limited discussion of this effect.

Close-Wound Coils Not Included

Coils with turn spacing less than 1.2 times the wire diameter were not simu-
lated during this study. The SRF of such coils cannot be accurately estimated
using the functions developed in this article. The range over which the results
may be safely extrapolated below the 1.2 ratio value is also not known.

For The Pragmatist

This article may not satisfy the pragmatist. Accurately predicting SRFs of
free-floating coils, disconnected from any other circuit components is the goal
here. Connecting the coil to a circuit typically lowers the apparent SRF by
5-10%. The task of predicting in-circuit behavior is not taken on here in any
detail.

Magnetic vs Electric vs Electromagnetic

One thing we learned from this study is that solenoid behavior at the first
resonance is not solely an inductive (i.e. magnetic field) problem; nor is it a
capacitive (i.e. electric field) problem. It is an electromagnetic field problem,
and all of the terms in Maxwell’s equations are in play. Specifically, electric
fields can be induced by magnetic fields, and more importantly, vice versa.

3

curl E = −∂B
∂t

and curl B = µε
∂E
∂t

+ µJ

At low frequencies, magnetic fields induced by varying electric fields (aka
displacement currents) are relatively insignificant, and the equations may be
approximated:

curl E = −∂B
∂t

and curl B ≈ µJ

As frequency increases, so does the rate of change of the E-field, and
the E-field magnitude grows in proportion to current in the coil as well. At
some point, both of these changes work together to make the approximation
invalid.

It is tempting to identify correlations between SRF and aspects of solenoid
geometry as being either capacitive or inductive in nature. In particular,
the former ignores the possibility that significant magnetic fields are being
induced by large, quickly varying electric fields.

Avoidance is the Best Policy

This article intentionally avoids any attempt to identify electric and magnetic
field effects individually at SRF. No opinions are presented or implied as to
whether such ideas suggested in existing literature are valid or not. Sim-
ulation data is treated empirically and analogies to inductive or capacitive
effects are purposely avoided.

Normalization

SRF is a function of solenoid geometry: wire diameter, winding pitch, coil
diameter and turn count. With the exception of turn count, linearly scaling
these values simultaneously by the same amount scales SRF (inversely) by
the scale factor. This allows geometry to be normalized to a convenient
reference.

Early research discovered the total length of wire, and the solenoid’s as-
pect ratio (length compared to diameter) are the two most important deter-
mining factors. As a result, solenoid geometry is often normalized relative
to the total length of wire wound to form the solenoid. This study is no
different and uses the same procedure.

4

It is also known that other geometric properties have a smaller effect.
The extensive simulations carried out for this article shed more light on the
importance of these other parameters.

Only air core solenoids with bare wire are considered here. Taking account
of permittivity of insulation and coil forms is beyond the scope of this article.

Measurement

A solenoid operating at the lowest SRF presents a high impedance at it’s ter-
minals, along with large, reactive electric and magnetic fields. These fields (at
significant amplitudes) occupy a much larger volume than the coil itself. As
a result, measurements are sensitive to the immediate environment – nearby
objects can change the measured SRF significantly by altering electic and/or
magnetic fields. Even the routing of wires used to connect test equipment
has an impact. This leads to two questions.

• Can the measurement environment for SRF be standardized?

• How does one predict SRF when a solenoid is used in an application
different from some standardized environment?

As early as 1902 the first question has been dealt with by measuring SRF
with the coil disconnected and with the immediate environment empty to
various degrees. The second question seems to have received little attention
in research which is not surprising; there are a huge number of variables in
the way a solenoid’s immediate environment might be configured in an actual
application.

In prior research, isolated solenoids have been measured by application of
various configurations of electro-magnetic fields. At resonance, the excitation
induces currents in the solenoid which result in large electric and magnetic
fields in the vicinity of the test coil. The enhanced fields are then detected
by probes or antennas, resonance being assigned to the frequency at which
the probe/antenna produces the largest output.

Drawings and photos of various test setups appear to place the test
solenoid in the near-field area of a source, typically another solenoid. The
test probe (e.g. a small dipole or gas discharge tube) is also placed in the
near field area of the coil. Some research states that the source and probe
apparatus is located far enough away from the coil as to have little effect on

5

its SRF, but test data to support these claims is not given. A few simulations
run as part of this study suggest these claims are likely valid.

Terminology

In this article, some coil geometry parameters are referred to by names which
are different than in prior research.

L/D becomes Aspect Ratio

Solenoid length divided by diameter is referred to as solenoid aspect ratio or
just aspect ratio and symbolized by As.

p/d becomes Winding Aspect Ratio

Winding pitch divided by wire diameter is called winding aspect ratio, sym-
bolized by Aw. This term is never referred to as simply the aspect ratio;
that’s reserved for As.

Velocity Factor becomes Normalized SRF

Much of existing literature characterizes SRF relative to the frequency where
total solenoid wire length is one-half wavelength. SRF is estimated by mul-
tiplying this frequency or wavelength by a correction factor. Drude came up
with such a term – his function f().

Others have associated this correction with the effective velocity of an
electromagnetic wave traveling along the wound wire helix. As a result, the
correction factor is sometimes referred to as a “helical velocity factor”, “ve-
locity factor” or similar. This factor is applied to the SRF instead of the self
resonant wavelength. Drude’s f() is therefore equivalent to the multiplicative
inverse of these velocity factors.

This article uses a name for the correction factor which is intended to be
more generic and less tied to any particular theory: normalized SRF. The
wavelength and frequency (in free space) associated with the coil wire being
a half wavelength long in free space is

λw = 2lw, fw =
c

λw
=

c

2lw
,

6

and normalized SRF, fn is defined as the ratio between actual SRF, fr
and the half-wavelength frequency fw.

fn ≡
fr
fw

=
2lwfr
c

This unit-less quantity is numerically identical to Knight’s vhx and equal
to the inverse of Drude’s function f(n,As, Aw, ε). Given normalized SRF and
coil wire length, true SRF is given by

fr =
cfn
2lw

Matlab and Octave

A zip file is attached to the PDF file containing this document. In there are
a set of data and script files for Matlab and Octave which implement the
algorithms described in this article. Many PDF viewers provide the ability
to extract the attached zip file, as does the pdftk utility.

Symbology

See the appendix for a complete listing of mathematical symbols used in this
article.

7

Chapter 2

Simulation Details

Simulation models contained nothing but a solenoid in free space. Excitations
and probes were implemented mathematically by the simulation software. No
source or probe objects were present in the coil environment.

Figure 2.1: Simulated TEM plane wave orientation

Coil simultations were excited by an ideal TEM plane wave. At first,
the plane wave was oriented as shown in figure 2.1. It was found however,
that with very long coils (aspect ratios above ten or so) the E-field had to be
rotated so that it had some component along the coil axis to get a significant
response. Most of the later simulations had the E-field rotated by 45 degrees.
Rotating the E-field angle did not appear to alter simulated SRF.

Resonance was defined as the frequency for which the H-field magnitude
on the axis of the solenoid was highest (i.e. a local maximum).

8

Searching for SRF

One of the challenges with simulating free-floating coils was that the software
wasn’t really designed for this. It was not possible to get an interpolated
frequency sweep in a single run which could be used to determine resonance.
Instead, custom scripting was used which searched for the frequency at which
the H-field was maximized. This technique required a separate simulation
run at every test frequency, making simulations a time consuming process.

Meshing

Many of the early exploratory runs were performed with fixed tetrahedral
mesh sizes. This allowed for faster runs but there was some question as to
the accuracy of results.

Later, simulations to establish reference data used three passes of mesh
refinement and compared favorably with the fixed-mesh runs.

Odd Behaviors

Geometries with very large wire diameters showed significantly different be-
haviors at resonance than more common designs. Specifically, most reason-
able designs would show the peak in H-field strength along the axis was
nearly coincident with a phase reversal of the H-field. For large wire diam-
eters however, the phase reversal was at a substantially different frequency
than the H-field peak. Also with large diameters, the Q of the coil seems
significantly lower than for many other geometries. These two observations
may be related.

Square Wire

Solenoids models used a square wire cross-section. Because simulations used
a tetrahedral mesh, square wires could be more accurately modeled with
a lot fewer mesh cells (compared to round wire). The resulting savings in
simulation time was the motivation for this choice.

9

Figure 2.2: Simulated coil with square wire

10

Chapter 3

Process Overview

Here we present a general description of the process used to generate the
estimation functions and some results. More detail on this is found in the
following chapter.

Inside Diameter

Measurements of diameter and total wire length are based on the inside
diameter of the solenoid. This is an empirically motivated choice – simulation
data was easier to fit and estimate by using inside diameter. Although this
may be correlated with skin and proximity effects, that connection is not
suggested or relied upon here.

Sparse Sampling

Figure 3.1 shows the normalized SRF from about 500 simulations of free-
floating solenoid, plotted against the solenoid aspect ratio (blue dots). A
solid red line shows data from Drude (with winding pitch Aw = 2.4) and
Pettit combined with smooth interpolation between those points. The Petit
extension data for As ≥ 6 is sparse and this is results in a less than smooth
plot there. The function developed by Knight to predict SRF is plotted as a
solid green line.

For any given solenoid aspect ratio, there is a range of simulation data
(blue dots) clustered around the value predicted by prior research. For aspect
ratios above 8-10 or so, the range of simulated SRF increases significantly.

11

0.1 1 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

As

f n

Normalized SRF vs Aspect Ratio

Simulations
Drude + Pettit
Knight

Figure 3.1: Summary of free-floating solenoid simulations

The key takeaway from this is that previously reported research represents
a sparse sampling of the coil geometry parameter space. For example, Petit’s
data appears to level off at high As values but also appears to be uneven or
noisy. Simulations show that SRF at high aspect ratios (As) depends strongly
on the winding pitch angle, and for coils with small pitch angles (high turn
counts) normalized SRF keeps increasing and does not level off. It only
begins to level off when the pitch angle is increased. Petit only measured
coils with a single winding pitch angle for each large aspect ratio, and did
not discover this dependence.

SRF Estimates

Three groupings of geometry parameters were found to be capable of accu-
rately predicting normalized SRF found in simulations.

1. Solenoid aspect ratio, As

2. Winding pitch angle and solenoid aspect ratio taken together, (ψ,As)

12

3. Winding aspect ratio and turn count taken together: (Aw, n)

The normalized SRF estimate defined here is the product of three func-
tions: an initial estimate P plus two corrections – Ψ corrects for winding
angle, and Λ for the winding aspect ratio:

fn = P (As) Ψ(ψ,As) Λ(Aw, n) ,

where

P is one or more low order polynomials in ln(As).

Ψ is linear function of sin(ψ) where the slope and offset are determined by
polynomials in As.

Λ is a non-linear function of both Aw and n.

If the two corrections are backed-out of the final estimate, we can write

P (As) =
fn

Ψ(ψ,As) Λ(Aw, n)

Similarly, the two corrections may be backed-out of simulation data like
this:

fsim
Ψ(ψ,As) Λ(Aw, n)

where fsim is the normalized SRF found in the simulation. This result
should ideally match the P (As) function exactly. Put another way, backing
out the two adjustments (Ψ,Λ) from simulation data allows it to be compared
directly to P (As).

The performance of SRF estimates developed in this article are depicted
in figure 3.2. The same set of simulations shown in figure 3.1 (with correc-
tions backed out) are plotted here against P (As). This shows that SRF esti-
mates accurate to 2% or better can be computed for most practical solenoid
geometries.

13

0.1 1 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

As

C
or

re
ct

ed
 S

R
F

Normalized SRF vs Aspect Ratio, max fit error = 11.4%, std dev = 1.5%

Simulations
P(As)

Figure 3.2: Simulations with Ψ(ψ,As) and Λ(Aw, n) backed out

Reference Points

A reference point is needed from which to develop the primary function P .
One must specify where the correction functions Ψ and Λ are unity. The first
correction is defined to be exactly one when the winding pitch angle is zero,
regardless of the solenoid aspect ratio:

Ψ(0, ·) ≡ 1

The second correction is defined to be one for a winding aspect ratio of
2.4 and infinite turn count:

Λ(2.4,∞) ≡ 1

The cases of course represent physically unrealizable coils. To approxi-
mate this ideal, the following guidelines were used for simulations to define
an initial version of the reference polynomial P (As).

14

• Winding pitch angle ψ preferably less than 0.02 radians but no more
than 0.05 radians.

• A winding aspect ratio Aw of 2.4. For larger values of As this was not
practical; when Aw was be increased above 2.4, turn counts were kept
high to minimize the effect.

• Turn counts preferably 40 or more. For very small solenoid aspect
ratios, this was not be practical. In those cases, turn counts were kept
at 10 or more.

• Wire diameter should not exceed 2% of coil diameter. This was not
suggested by the above, but used out of an abundance of caution.

Taken all together, this results in tightly wound coils using small diameter
wire with high turn counts. At the extremes of solenoid aspect ratio, some
of these goals must be compromised somewhat as indicated. Extreme values
of As may not represent geometries that are useful in practice, so small
deviations from the idealized references are perhaps less important.

One of the challenges occurs for large aspect ratios – it is not feasible to
simulate the large turn counts that would be required for the target winding
aspect ratio of 2.4:1. In these cases, Aw was allowed to increase to as much
as 10:1.

Initial Estimate

The function P (As) is defined in two overlapping piecewise segments with
low-order polynomials. Splitting the range of aspect ratios into two segments
avoids having to use a higher order polynomial to cover the entire range.

One segment covers aspect ratios below three, and the other is valid for all
ratios greater than two. The polynomial argument is the natural logarithm
of the aspect ratio:

P (x) =
n∑
j=0

cj (lnAs)
j

15

Pitch Angle Correction: Ψ(ψ,As)

The first adjustment to the initial estimate of SRF is for the winding pitch
angle, ψ. The correction is linear in either ψ or sinψ1, while the coefficients
themselves are polynomials in the logarithm of the solenoid aspect ratio.

Ψ(ψ) = c1(As) sinψ + c0(As)

Two fifth-order polynomials determine the linear slope c1, and offset c0
as a function of aspect ratio.

c0(As) =
5∑
j=0

b0,j (lnAs)
j c1(As) =

5∑
j=0

b1,j (lnAs)
j

Winding Aspect Ratio Correction: Λ(Aw, n)

This correction has significant dependence on both winding aspect ratio and
turn count. For a number of different turn counts, the variation in SRF
versus Aw has been approximated by cubic polynomials in the argument

Z(Aw) =
1

cosh−1Aw
,

so for tabulated values of n, the correction is

Λ(Aw, n) =
3∑

k=0

cn,kZ
k

The first coefficient subscript in cn,k specifies the turn count, while the
second specifies the power of Z in the polynomial.

Polynomial coefficients for several different values of n are tabulated in
the appendix. When corrections are needed for a turn count other than a
tabulated value, the following algorithm is recommended to interpolate the
correction. Given a winding aspect ratio A and turn count m,

1. Evaluate Λ(A, n) for all tabulated turn counts. This yields several pairs
of values {n,Λ(A, n)}.

1It’s not clear whether this is linear in ψ or sinψ as pitch angles large enough for this
to make much of a difference have not been simulated.

16

2. Fit a third-order polynomial to this set of data with n inverted:
{n−1,Λ(A, n)}.

3. Evaluate this polynomial with the argument m−1 to get the interpo-
lated winding pitch correction.

Development Background

This correction was the most difficult to work out. Some of the thinking
behind it is presented here. There exists a higher voltage and more phase
difference between adjacent turns in coils with small turn counts. This might
explain the strong dependence on turn count. This is only conjecture how-
ever, and no concrete mathematical model is offered to back it up.

Fitting the correction to values of Z is the result of guesswork; Z is
the same variable in which the impedance of a parallel wire transmission
line is linear. Lacking a more concrete theoretical underpinning, this should
be considered a coincidence – a lucky guess. Perhaps a theory could be
developed to explain this, but at this point it is just an empirical fact. If
adjacent turns are truly acting as a parallel wire line, it is an odd one because
each turn (except first and last) is adjacent to two other turns, and this is
like no parallel wire line we know of. Furthermore, currents in adjacent turns
are traveling in the same direction, whereas with a parallel line they would
be in opposite directions.

Simulation scans to work out this correction held the solenoid and wire
diameters, and turn count constant for each scan. The following limits were
observed:

• ψ ≤ 0.02

• As < 1.0

• d/D = 0.01

The first two items together are aimed at keeping the contribution of the
Ψ correction constant and negligible. For each scan, the pitch was varied to
accomplish the scan over values of Aw, in keeping with the above limits.

17

Chapter 4

Process Details

The process and data used to generate the three functions used in estimating
SRF are detailed here.

fn = P (Aw) Ψ(ψ,As) Λ(Aw, n)

Reference Scan

Reference scan data consists of pairs of {As, fn} values, covering a range of
aspect ratios from 0.05 to 40. From this data, two piecewise polynomial fits
to the raw reference scan data are created. This is a temporary fit which will
eventually be discarded, and is named Q(As) here. It is shown in figure 4.1.

The aspect ratio data is split into two overlapping ranges, {0..3} and
{2..50}. The polynomial argument is the natural logarithm of As. The
first range requires a cubic polynomial, while the second range only needs a
quadratic or linear fit. In figure 4.1 one polynomial fit is in red while the
other is in blue.

The goal for this simulation scan was to keep winding aspect ratio Aw =
2.4 for the entire scan, but this would require very large turn counts for the
higher values of As. As such, Aw was allowed to increase above 2.4 during
the scan. In figure 4.1, a unique data point symbol/color has been assigned
to each different value of Aw used in the scan.

18

0.1 1 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Solenoid Aspect Ratio, As

N
or

m
al

iz
ed

 S
R

F

L/D Reference Scan, Fit err max 0.79%, σ 0.31%

Figure 4.1: Polynomial fits to uncorrected reference scan

Generating Λ(Aw, n)

Data from scans of winding aspect ratio Aw was compared to the un-corrected
polynomial reference fit Q(As). The normalized SRF fn was divided by the
reference polynomial fit and that ratio is what was analyzed in this step:
fn/Q(As). There are individual scans for different values of turn count n,
where each scan contains simulations covering a range winding aspect ratios
Aw. That data is graphed in figure 4.2, and covers a range of Aw from 1.2 to
7.0.

Cubic polynomials in Z(Aw) = [cosh−1(Aw)]−1 were then fit to the data
associated with each value of turn count. Eight different polynomial fits were
produced. These are plotted as solid lines in figure 4.2.

Although the maximum value of Aw scanned was about 7.0, it is suggested
(without justification) that the polynomial fit may be extended to Aw values
as high as 100.

The smallest winding aspect ratio examined was 1.2, and we don’t feel it
is safe to extrapolate below this value. Many close-wound coils constructed

19

10030 10 7 5 4 3 2.4 2 1.5 1.3 1.2
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Aw -- axis is linear in Z(Aw)

R
el

at
iv

e
S

R
F

C
or

re
ct

io
n

SRF vs Z(Aw) = [cosh-1(Aw)]-1

Raw Data
n 6, L/D 0.07 to 0.40
n 7, L/D 0.08 to 0.47
n 8, L/D 0.10 to 0.54
n 10, L/D 0.12 to 0.67
n 12, L/D 0.14 to 0.81
n 16, L/D 0.19 to 1.08
n 24, L/D 0.29 to 1.61
n 50, L/D 0.60 to 3.36

Figure 4.2: Aw corrections relative to reference scan

with magnet wire will have values of Aw below 1.2 and their SRF might not
be accurately estimated using these methods.

If Λ(Aw, n) is required for a tabulated turn count, the tabulated polyno-
mial fit is simply evaluated. For non-tabulated turn counts, interpolation is
required. The suggested process has two steps since the Λ function’s domain
is two-dimensional as shown in figure 4.3.

First, all polynomials are evaluated for the aspect ratio Aw of interest.
This yields several (e.g. eight) pairs of data {n,Λ(Aw, n)}. Next, a second-
order polynomial is fit to pairs of inverse turn count and correction values,
{n−1,Λ(Aw, n)}, and the polynomial is evaluated for the desired turn count.

Although the axes in figure 4.3 are labeled in turn count and winding
aspect ratio, they are actually plotted linearly in Z and n−1. This shows the
function is smooth and well behaved in these variables, making interpolation
a safe process.

20

Figure 4.3: The Λ correction as a function of both arguments

Generating Ψ(ψ,As)

Scans of ψ were first corrected with the previously developed Λ function, then
analyzed relative to the reference polynomial Q(As). The data analyzed
for this step is fn/[Q(As) Λ(Aw, n)]. Scan data for this step is grouped
by different solenoid aspect ratios, with each sub-scan covering a range of
winding pitch angles.

This data is all nearly linear in sinψ and can be approximated with a
linear function. The slope and offset values for each value of As are plotted
as a function of (lnAw) in figure 4.5, along with cubic polynomials fits.

Since scans were only performed for aspect ratios of 3.0 and above, some
anchor points have been added for small aspect ratios to prevent the curve
fit from going off into the weeds there. For small aspect ratios, ψ is going to
be very small and the actual slope represented by the anchor points is not
all that important – it will be multiplied by a small value of ψ and won’t
contribute that much to the correction factor.

The offset used for anchor points is perhaps more important. There’s not
a lot of justification for the value actually chosen (1.06), other than the fact
that net results of the Ψ correction are satisfactory. A value of 1.04 could
have been used, but the polynomial fit is a little better with the anchors at

21

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
0.75

0.8

0.85

0.9

0.95

1

1.05

sin ψ

R
el

at
iv

e
C

ha
ng

e

Variation of normalized SRF with pitch angle

L/D 3.0
L/D 4.2
L/D 6
L/D 9
L/D 14
L/D 20
L/D 28
LD 40

Figure 4.4: Ψ corrections relative to reference scan corrected for Aw

1.06. Finally, note that the variation in offset only covers a range of about
3% or so and this doesn’t represent a very significant correction.

To compute Ψ(ψ,As), the slope and offset polynomials are first evaluated
with argument (lnAs), yielding a slope, c1 and offset c0. The resulting linear
function is then evaluated using sinψ as an argument.

Ψ(ψ,As) = c1(As)ψ + c0(As)

Generating P (As)

In this final step all simulations (about 500 in total) were used. The functions
Ψ and Λ (as determined above) were backed out of the simulation data. The
resulting data is then

fn
Ψ(ψ,As) Λ(Aw, n)

That data presents a fairly smooth curve, with data points lying in a

22

10
-2

10
-1

10
0

10
1

10
2

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

Solenoid aspect ratio (log scale)

Li
ne

ar
 S

lo
pe

, ∂
 f n /

∂
ψ

Sensitivity of normalized SRF to pitch angle vs L/D ratio

10
-2

10
-1

10
0

10
1

10
2

1.04

1.06

1.08

1.1

1.12

Solenoid aspect ratio (log scale)

Li
ne

ar
 O

ffs
et

Sensitivity of normalized SRF to pitch angle vs L/D ratio

Figure 4.5: Ψ linear fit coefficients versus lnAs

narrow band at each value of As as shown in figure 4.6. Two polynomials
covering the same overlapping ranges of As as used in Q(As) are fit to this
data, using (lnAs) as the independent variable, to get the initial estimate
function, P (As).

It is important to note that the original polynomials Q(As) fit to the
reference scan (figure 4.1) are not exactly the same as the final P (As) poly-
nomials. Q(As) is only a reference point from which Ψ and Λ corrections
are computed. The two functions are almost the same because the goal of
corrections was to bring data into agreement with Q(As), but it’s not exact –
in particular because the Ψ correction has a value of about 1.06 (six percent
high) for small values of aspect ratio As.

Figure 4.7 shows the difference between simulation data (corrected for
Ψ,Λ) and the final P (As) function.

This shows that the resulting composite SRF estimate has a typical ac-
curacy in the range of 1-2%.

23

0.1 1 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

As

C
or

re
ct

ed
 S

R
F

Normalized SRF vs Aspect Ratio, max fit error = 8.8%, std dev = 1.1%

Simulations
P(As)

Figure 4.6: All simulation data with Ψ and Λ corrections

24

0.1 1 10

0

5

10

As

P
er

ce
nt

 D
iff

er
en

ce

Polynomial Fit vs Simulation Data, mean = -0.01%, std dev = 1.1%

-3 -2 -1 0 1 2 3 4 5 6 7
0

20

40

60

80

Percent

Distribution of differences

Figure 4.7: Final P (As) fits vs simulation data corrected for Ψ, Λ

25

Chapter 5

Accuracy

While the corrections provided for winding pitch (Ψ) and winding aspect
ratio (Λ) functions are significant, it is useful to compare the P (As) func-
tion without these corrections to prior measurement data and the function
developed by Knight.

0.1 1 10
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

As

D
ru

de
 a

nd
 K

ni
gh

t d
iv

id
ed

 b
y

P
(A

s)

Ratios of Drude data and Knight function to P(As)

Drude + Pettit
Knight

Figure 5.1: Knight and Drude normalized SRF relative to P (As)

26

Figure 5.1 shows the ratio between normalized SRF data from Drude and
Knight’s function, and the initial estimate function P (As) developed in this
study. There’s reasonable agreement through the middle range of aspect
ratios (0.1 < As < 6).

Drude’s data begins disagreeing below about As = 0.06 for unknown
reasons. Knight has commented that the flattening of Drude’s curves at very
low aspect ratios may be suspect. Also, at high aspect ratios, Petit’s data
(As > 6) likewise begins to diverge from P (As). It has previously been noted
this is likely due to a sparse sampling of coil geometry values. It may also be
related to some extremely large pitch angles used by Petit at aspect ratios
above 20.

Knight’s function diverges at very low As values, but not as much as
Drude’s data and this is probably because Knight dismissed the flattening
of Drude’s data there. The Knight function also diverges at high aspect
ratios, probably because it is based on Petit’s data which has been shown to
represent a sparse sampling of coil geometries.

Validation

Using numbers published by Knight for his 18T coil, and adjusting diameter
and wire lengths to reflect inside diameter, we get an estimated SRF of
26.50MHz which differs from the published SRF measurment (26.69MHz) by
-0.7%. There’s no correction for round wire in this estimate, and increasing
Aw from 1.787 to 1.912 makes the estimate exact. Being only a single data
point, attempting to deduce a general round wire correction from this is
not justified. Without more analysis, it’s not even possible to conclude the
difference is due to the wire profile.

Unfortunately, Drude did not publish turn counts for his test coils. As
a result, it is not possible to compare his data with the estimates developed
here.

Petit’s Data

We also compared Petit’s data to the uncorrected P function, by backing out
the Ψ and Λ corrections from that data. That result is plotted along with
the initial SRF estimate P (As) in figure 5.2.

27

1 10 50
0.5

1

1.5

2

2.5

3

As

C
or

re
ct

ed
 S

R
F

Petit Data Check

1 10 50
-10

-5

0

5

10

P
er

ce
nt

 D
iff

er
en

ce

PE Rod
Air Core
P(As)

PE Rod
Air Core

Figure 5.2: Comparing Petit’s SRF data with estimates

Data taken with a PE rod core is shown in blue and the values have been
increased by 5% to compensate for the presence of the polyethylene former
rods. Air core data is red.

Agreement is reasonable for As < 20, but for As = 24 and 42, the values
differ from P (As) by 15 and 41% respectively and are not visible on the
plot. These represent very large pitch angles which we did not simulate
when designing the estimating functions. There seem to be two possibilities;
either more simulations are needed to reveal undiscovered behavior or some
issues may exist with Petit’s measurements. No attempt to resolve this issue
is made as part of this study.

Dielectric Effects

See the appendix for information on a brief investigation that was done re-
garding coil forms.

28

Validation Summary

SRF estimates developed in this study appear to be in good agreement with
measurements published by Knight an Petit.

29

Chapter 6

Useful Solenoids

It is encouraging to know that simulated SRFs of isolated solenoids can be
predicted accurately, and that the simulations correlate nicely with mea-
surements of physical solenoids. However, this is not worth much unless the
results can be translated to the environment in which the solenoid is actually
used.

A series of simulations were performed where the solenoid was driven by
a discrete voltage source instead of being excited by an incident TEM plane
wave. This necessitated adding wires to the simulation to connect the source.

As shown in figures 6.1 and 6.2, the feed wires were routed only a few
wire radii above the coil wires themselves. Although this depicts round wires,
square wires were used in the simulation runs.

The goal here was to examine SRF behavior in-circuit. This may or may
not be a realistic model of actual use, but it serves to explore how SRF can
change when a coil is not isolated in free space.

Resonance

One question that immediately arises when a coil is connected into a real-
world circuit is: what defines self-resonance? One perhaps obvious answer is
the frequency at which impedance is maximum – but at what point in the
circuit is the impedance measured?

Particulars of the coil’s connection into a circuit will alter the apparent
resonance and accurately predicting that is beyond the scope of this article.

30

Figure 6.1: Typical model of driven solenoid

Source Connection Detail

Connection details for the discrete source port are shown in figure 6.2. The
source is connected between the two tapered points visible in the center of
the image.

Figure 6.2: Discrete port connection detail

31

Using discrete sources in these models requires some care. Two physical
points on the model are specified for the source connection. The source itself
is modeled as having zero size, with infinitely thin, perfectly conducting wires
connecting it to specified points in the structure.

In the limit, an infinitely thin wire has infinite inductance and this fact
can cause instability in the simulation. It becomes necessary to prevent the
software from increasing the mesh density around these wires. If the soft-
ware starts increasing the mesh density in that area, the simulation becomes
unstable and invalid results ensue. That is prevented in this case by placing
the structure connections extremely close together, resulting in very short
connecting wires.

As shown in figure 6.2, the feed wires are brought almost in contact with
each other, using conical tips on the ends to provide very small landing areas
for the discrete port connections.

It would have been possible to connect a short parallel-wire transmission
line to the coil, and feed the line with a waveguide port in the simulation.
Though this is in some aspects more realistic, electromagnetic fields at the
end of the feed line would interact with the coil, probably generating different
results. There would also be more configurable parameters such as the line’s
size and impedance to further confuse the issue.

Simulation Results

These runs were even more time consuming that with free-floating solenoids
due to the extra connecting wires added.

Initial results seem to indicate that connected solenoid SRF values are
five to ten percent lower than a free-floating coil. Not much work has been
done with simulations here.

32

Appendix A

Mathematical Symbols

L Total length of coil winding, measured at center of wire.

D Coil (inside) diameter. Measured between inside faces of the wire, instead
of center-to-center.

p Winding pitch. Center-to-center distance between adjacent turns.

ψ Winding pitch angle in radians, ψ = tan−1(p
πD

)

C Winding circumference =
√
p2 + (πD)2, based on inside diameter.

d Wire diameter, not including any insulation.

a Wire radius; half the diameter.

n Turn count.

lw Total length of wire in the solenoid along inside diameter = nC

f Frequency in general.

fr SRF in Hz.

fn Normalized SRF (unitless).

c Without subscript, the speed of light in vacuum.

cn With subscript, a general polynomial coefficient.

As Solenoid aspect ratio, L/D

33

Aw Winding aspect ratio, p/d

ln(x) is the natural logarithm of the argument x.

logb(x) is the logarithm in base b of the argument x. There is no assumed
base and this function is not used without specifying a base.

34

Appendix B

Functions and Coefficients

The SRF estimate is given by

fr =
c

2lw
P (As) Ψ(ψ,As) Λ(Aw, n)

Initial SRF Estimate

The P (As) function is a piecewise polynomial defined as

P (As) =
n∑
k=0

ck (lnAs)
k

Range n c3 c2 c1 c0

As < 3 3 8.16222× 10−3 + 7.00523× 10−2 2.68222× 10−1 7.98543× 10−1

As > 2 2 8.56326× 10−3 4.07654× 10−1 7.29018× 10−1

Figure B.1: Coefficients of P () Polynomial

The two ranges overlap and either set of coefficients may be used in the
overlapping region.

35

Winding Angle Correction

This correction is linear in sinψ, but the linear coefficients themselves are
functions of the solenoid aspect ratio As. Fifth-order polynomials in (lnAs)
are used to determine them.

Ψ(ψ,As) = c1 sin(ψ) + c0

where

ck =
5∑
j=0

ckj (lnAs)
j

j c0,j c1,j

5 −1.38014× 10−4 +1.12806× 10−3

4 −1.20550× 10−4 −5.54647× 10−4

3 +2.58178× 10−3 −2.44538× 10−2

2 +3.16921× 10−3 −4.56589× 10−3

1 −9.94120× 10−3 +1.47443× 10−1

0 +1.04661 −1.44665

Figure B.2: Coefficients for determining c1, c0

Although the sine of the winding pitch is used here, pitch angles are small
enough in all of our simulations that the difference between ψ and its sine are
quite small and the function might actually depend on ψ rather than sin(ψ).

36

Winding Aspect Ratio Correction

Cubic polynomials are provided for eight different values of turn count. Each
one takes the argument

Z(Aw) =
1

cosh−1Aw
,

and gives the correction for that specific turn count:

Λ(Aw, n) =
3∑

k=0

ck(n) Zk(Aw)

Unless the turn count of interest matches one of the values tabulated in
figure B.3, the correction must be interpolated. To do this, first evaluate
all eight polynomials at Z(Aw), yielding eight pairs of values {n,Λ(Aw, n)}.
Then fit a polynomial to the value pairs {n−1,Λ(Aw, n)}. A first order linear
fit is probably sufficient, but a 2nd or 3rd order fit can be made if desired.
The Matlab/Octave script attached to the PDF file containing this document
generates a 3rd order polynomial fit. That would look like this for an nth
order fit:

Λ̂(Aw, n) =
n∑
j=0

αjn
−j

where the fit coefficients are αj.

n c3 c2 c1 c0

6 +4.12860× 10−2 −8.55083× 10−2 −2.61242× 10−1 +1.20110

7 +4.48689× 10−2 −1.11770× 10−1 −1.93482× 10−1 +1.16278

8 +5.25879× 10−2 −1.47986× 10−1 −1.20904× 10−1 +1.12744

10 +7.05875× 10−2 −2.16060× 10−1 −1.37143× 10−2 +1.07940

12 +3.81287× 10−2 −1.35709× 10−1 −4.09260× 10−2 +1.06993

16 +2.23880× 10−2 −9.02617× 10−2 −4.28932× 10−2 +1.05379

24 +9.87100× 10−3 −5.06944× 10−2 −3.59897× 10−2 +1.03541

50 +4.22761× 10−2 −1.48470× 10−1 +1.05395× 10−1 +0.979135

Figure B.3: Λ polynomial coefficients

37

Appendix C

Dielectric Effects

1 10 50
0.5

1

1.5

2

2.5

3

As

C
or

re
ct

ed
 S

R
F

Petit Data Check (PE rod data SRF increased 5%)

1 10 50
-10

-5

0

5

10

P
er

ce
nt

 D
iff

er
en

ce

PE Rod
Air Core
P(As)

PE Rod
Air Core

Figure C.1: Petit’s PE rod data SRF bumped up by 5%

See the data shown in figure C.1. Here, Petit’s SRF values which involved
a coil former (PE rod) have been increased by 5%. The resulting excellent
agreement with air-core data in the same plot suggests the addition of the
PE rod lowered the SRF by 5%. However, there are no measurements of the
same coil geometries without the rod, and all that can be said for certain is

38

that this 5% adjustment brings the data into agreement with data for large
aspect ratios.

The Cadd Solenoid

Knight tested a Teflon-cored solenoid provided him by one Dr. Cadd. Buried
in the blue data markers in figures 5.2 and C.1 is one point representing
Knight’s measurement of this Teflon-cored solenoid. Can you spot it? It’s
the middle point of the three which lie between As = 3 and As = 4. This
data fits right in with Petit’s – with no correction for the dielectric constant
of Teflon. SRF estimated by the formulas developed here is 5.9% higher that
what Knight measured (19.00 versus 17.94MHz).

While this study is largely concerned with air core solenoids, a few sim-
ulation runs were performed to investigate this further. Three runs which
physically modeled the solenoid supplied to Knight by Dr. Cadd. Coil for-
mer dielectric constant was set to 1.0 (air or vacuum), 2.1 (Teflon) and 2.8
(ebonite) in three separate simulations. The wire was modeled in a groove
one quarter of the wire diameter deep (1mm), with 44 turns instead of the
published 43.8.

Figure C.2 shows the results of these simulations. For each line item, the
difference between its SRF and SRF of other line items is shown – relative
to the SRF of the line item. For example, differences on the air-core line
item are relative to the air-core SRF. Column c for the air-core simulation
line item indicates that SRF of the Teflon core simulation SRF is 4.8 percent
lower – relative to the air-core SRF.

There are three main observations about this data.

1. Measured SRF was 1.2% lower than that predicted by the simulation
with Teflon core. This suggests the simulations are reasonably accurate.

2. The Teflon core simulation shows a 5.0% increase in SRF when the core
is removed.

3. The ebonite-core simulation showed a 7.9% increase in SRF when the
ebonite core is removed.

A graph from page 93 of Knight is reproduced in figure C.3. Comparing
the blue and green dotted lines, for the aspect ratio of the Cadd coil (Aw =

39

Item SRF % Difference

(MHz) a b c d

Physical Coil a 17.939 – -1.5 1.2 6.3

Ebonite-core Simulation b 17.674 1.5 – 2.7 7.9

Teflon-core Simulation c 18.160 -1.2 -2.7 – 5.0

Air-core Simulation d 19.072 -5.9 -7.3 -4.8 –

Figure C.2: Simulations of the Cadd solenoid

3.1) we see about an 11% difference, while the simulations suggest the value
is closer to 8%. This isn’t conclusive, but looking at smaller aspect ratios, say
Aw = 0.4, there is a 25% increase in SRF when the ebonite core is removed.

Figure C.3: From page 93 of Knight

Figure C.4 shows the results of these simulations. Two coil geometries
were examined. The first is identical to the Cadd coil but with turn count
reduced to only six turns. This gives an aspect ratio As = 0.45. Another
two runs with and without ebonite core were performed with pitch and wire

40

diameter halved, and turn count doubled. This gave a different turn count
but with identical values of solenoid and winding aspect ratios.

Item SRF % Difference

(MHz) a b c d

6T, ebonite core a 55.899 – 19.5 – –

6T air core b 66.830 -16.4 – – –

12T ebonite core c 29.298 – – – 24.4

12T air core d 36.408 – – -19.5 –

Figure C.4: Modified simulations of the Cadd solenoid

In summary, simulations suggest that dielectric effects are roughly in line
with that proposed in earlier research. There is some significant unexplained
variability as shown in figure C.4 which is left unexplored by this study.

41

Appendix D

Bibliography

[1] Drude, Paul Karl Ludwig, On the construction of Tesla trans-
formers, Period of oscillation and self-inductance of the coil.
(1902), Translation by Knight and Weaver, 2016.

[2] Medhurst, R.G., H.F. Resistance and Self-Capacitance of
Single-Layer Solenoids, Wireless Engineer, Feb 1947 pp35-43.

[3] Knight, David W., The self-resonance and self-capacitance of
solenoid coils, Self-published, DIO: 10.13140/RG.2.1.1472.0887

42

	Introduction
	Simulation Details
	Process Overview
	Process Details
	Accuracy
	Useful Solenoids
	Mathematical Symbols
	Functions and Coefficients
	Dielectric Effects
	Bibliography

Scripts/.svn/dir-prop-base

K 14
bugtraq:number
V 4
true
END

Scripts/.svn/entries

10

dir
34
file:///F:/Max/Subversion-Repositories/SNV-Genetic-Antennas/trunk/Antenna-Articles/Solenoid-SRF/SRF-Matlab/Scripts
file:///F:/Max/Subversion-Repositories/SNV-Genetic-Antennas

2020-12-01T20:50:10.550700Z
34
Max
has-props

b15d2a5c-dbb6-9145-a94a-43f7a152dba6
�
PsiPolys.txt
file

2019-03-17T18:51:27.378400Z
5a13ce087665ae945a0d72453bb593e8
2020-12-01T20:50:10.550700Z
34
Max

132
�
EstimateSRF.m
file

2020-12-01T17:04:23.445200Z
3d808dd3e91d6f462b34113218b52595
2020-12-01T20:50:10.550700Z
34
Max

2333
�
AwCorrPolys.mat
file

2019-03-17T08:37:38.849000Z
d83316e558703f66d3116f5a71a5e2d8
2020-12-01T20:50:10.550700Z
34
Max
has-props

502
�
FnPoly.txt
file

2019-03-21T01:44:21.235452Z
0d0554ca53d5862a4601a4c845bc98ba
2020-12-01T20:50:10.550700Z
34
Max

196
�
AwCorr.m
file

2020-12-01T16:46:11.911354Z
81a9fc059926311dc8037bcc6198f783
2020-12-01T20:50:10.550700Z
34
Max

2312
�
initialFn.m
file

2020-12-01T16:36:40.961100Z
43973ec53e090a78c27aabceee92f9af
2020-12-01T20:50:10.550700Z
34
Max

2833
�
AwCorrPoly.m
file

2020-12-01T16:22:26.656200Z
5ca32699530f804fc8fffcd1cd42045b
2020-12-01T20:50:10.550700Z
34
Max

2367
�
PsiCorr.m
file

2020-12-01T17:04:43.139100Z
d42d07ae28e7ebceb43eb40a4ff7c610
2020-12-01T20:50:10.550700Z
34
Max

1908
�

Scripts/.svn/prop-base/AwCorrPolys.mat.svn-base

K 13
svn:mime-type
V 24
application/octet-stream
END

Scripts/.svn/text-base/AwCorr.m.svn-base

% function AwCorr(Aw,n)

%

% Computes the correction to solenoid self resonant frequency for winding aspect ratio

%

% Aw is the winding aspect ratio -- winding pitch divided by wire diameter

%

% n is the number of turns of wire in the solenoid

%

% Both Aw and n may be arrays, and must either contain the same number of elements,

% or one of them must be scalar.

%

% The result will have the same size as either Aw or n.

%

%

% Copyright 2020 Open Source Hardware Engineering

%

% Redistribution and use in source and binary forms, with or without modification,

% are permitted provided that the following conditions are met:

%

% 1. Redistributions of source code must retain the above copyright notice, this list of

% conditions and the following disclaimer.

%

% 2. Redistributions in binary form must reproduce the above copyright notice, this list of

% conditions and the following disclaimer in the documentation and/or other materials provided

% with the distribution.

%

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

% FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

% DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

% WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

% WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

%

function Corr=AwCorr(Aw,n)

if numel(Aw) > 1

 if numel(n) > 1

 if numel(n) ~= numel(Aw)

 error('Both Aw and n must be the same size, or at least one of them must be scalar.');

 end

 nk=1:numel(n);

 else

 nk=ones(1,numel(Aw));

 end

 Corr=zeros(size(Aw));

 Awk=(1:numel(Aw));

else

 Corr=zeros(size(n));

 Awk=ones(1,numel(n));

 nk=1:numel(n);

end

for k=1:numel(Corr)

 p=AwCorrPoly(Aw(k),3);

 Corr(k)=polyval(p,1/n(k));

end

Scripts/.svn/text-base/AwCorrPoly.m.svn-base

function p=AwCorrPoly(Aw,porder)

% poly=AwCorrPoly(Aw,porder)

%

% returns polynomial in 1/n for the winding aspect ratio Aw

% correction at a specified value of winding aspect ratio.

% Polynomial order (porder) is optional and defaults to 2.

% Values above 3rd order are not recommended.

% if supplied, plotIt gives a figure number to plot the polynomial

% fit.

%

% Uses values of 'n' and 'polys' stored in the file AwCorrPolys.mat

%

%

% Copyright 2020 Open Source Hardware Engineering

%

% Redistribution and use in source and binary forms, with or without modification,

% are permitted provided that the following conditions are met:

%

% 1. Redistributions of source code must retain the above copyright notice, this list of

% conditions and the following disclaimer.

%

% 2. Redistributions in binary form must reproduce the above copyright notice, this list of

% conditions and the following disclaimer in the documentation and/or other materials provided

% with the distribution.

%

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

% FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

% DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

% WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

% WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

%

if numel(Aw) > 1

 error 'Aw must be scalar';

end

load 'AwCorrPolys.mat';

if numel(n) ~= size(polys,1)

 error 'Error in AwCorrPolys.mat data file: numel n must match num rows polys';

end

if nargin < 2

 porder=2;

end

corr=zeros(size(n));

x=1/acosh(Aw);

clear xlbl;

m=numel(n);

for k=1:m

 corr(k)=polyval(polys(k,:),x);

 xlbl{k}=sprintf('%1.0f',n(m-k+1));

end

xlbl{m+1}='\infty';

x=1./n;

y=corr;

p=polyfit(x,y,porder);

%fitErr=(polyval(p,x)-y)./y*100;

%stdErr=std(fitErr);

%maxErr=max(abs(fitErr));

Scripts/.svn/text-base/AwCorrPolys.mat.svn-base

n:[8x1 double array]

polys:[8x4 double array]

Scripts/.svn/text-base/EstimateSRF.m.svn-base

% function srf=EstimateSRF(D,n,d,p)

%

% Estimates the self-resonant frequency of air-core single-layer solenoids

%

% D : Inside diameter of the solenoid winding (meters)

% n : Turn count

% d : Wire diameter (meters)

% p : Winding pitch -- distance between adjacent turns (meters)

%

% If an argument is an array, then all other arguments must either be

% scalar, or an array of the same size.

%

%

% Copyright 2020 Open Source Hardware Engineering

%

% Redistribution and use in source and binary forms, with or without modification,

% are permitted provided that the following conditions are met:

%

% 1. Redistributions of source code must retain the above copyright notice, this list of

% conditions and the following disclaimer.

%

% 2. Redistributions in binary form must reproduce the above copyright notice, this list of

% conditions and the following disclaimer in the documentation and/or other materials provided

% with the distribution.

%

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

% FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

% DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

% WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

% WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

%

function srf=EstimateSRF(D,n,d,p)

c=299792458; % speed of light in vacuum (m/s)

L=n.*p;

As=L./D;

Aw=p./d;

psi=atan(p./(pi*D));

lw=pi*n.*D;

%

% Compute the Normalized SRF

% It is the product of initial estimate and two corrections,

% one for winding angle and the other for winding aspect ratio.

%

Fn=initialFn(As).*PsiCorr(psi,As).*AwCorr(Aw,n);

%

% The SRF estimate is equal to the frequency at which the total

% wire length is 1/2 wavelength in free space, multiplied by the

% above-computed nomalized SRF (Fn).

%

srf=c*Fn./(2*lw);

Scripts/.svn/text-base/FnPoly.txt.svn-base

 0.0000000e+000 3.0000000e+000 8.1824033e-003 6.9429670e-002 2.6884917e-001 8.2533218e-001

 2.0000000e+000 5.0000000e+001 0.0000000e+000 1.6105695e-003 4.2509058e-001 7.4552192e-001

Scripts/.svn/text-base/initialFn.m.svn-base

% function Fn=initialFn(As)

%

% Computes the inital resonant frequency estimate as a function of solenoid aspect ratio

% which is length divided by inside diameter of the windings.

%

% The result multiplies the frequency at which total solenoid wire length is exactly

% one-half wavelength in free space.

%

% Copyright 2020 Open Source Hardware Engineering

%

% Redistribution and use in source and binary forms, with or without modification,

% are permitted provided that the following conditions are met:

%

% 1. Redistributions of source code must retain the above copyright notice, this list of

% conditions and the following disclaimer.

%

% 2. Redistributions in binary form must reproduce the above copyright notice, this list of

% conditions and the following disclaimer in the documentation and/or other materials provided

% with the distribution.

%

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

% FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

% DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

% WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

% WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

%

function Fn=initialFn(As)

dataFn='FnPoly.txt';

if ~exist(dataFn,'file')

 error('The data file FnPoly.txt is missing');

end

%

% data file contains multiple rows.

% each row contains two range values followed by polynomial coefficients.

% the range values are min/max values of As over which the polynomial in that row is valid.

% ranges specified in successive rows are expected to overlap

%

a=load('FnPoly.txt');

rng=a(:,1:2);

p=a(:,3:end);

%

% modify overlapping ranges so that they don't overlap and change-over at center of the overlap.

%

for k=2:size(rng,1)

 m=(rng(k-1,2)+rng(k,1))/2; % m is the center of the range overlap

 rng(k-1,2)=m;

 rng(k,1)=m;

end

Fn=zeros(size(As));

%

% for each range, find the entries in the As array that fit within that range,

% and evaluate the polynomial for those As entries.

% Any As values which lie outside the range of all data rows will not be used, and

% an estimate of zero will be returned for them in the Fn array.

%

for r=1:size(rng,1)

 k=find((As >= rng(r,1)) & (As <= rng(r,2)) & (Fn == 0));

 Fn(k)=polyval(p(r,:),log(As(k)));

end

Scripts/.svn/text-base/PsiCorr.m.svn-base

function Corr=PsiCorr(psi,As)

% y = PsiCorr(psi,As)

%

% Computes the winding angle correction to the estimate for self-resonant frequency.

%

% psi winding pitch angle in radians

% As solenoid aspect ratio (L/D)

% returns the multiplicative correction for the given winding pitch angle

%

%

% Copyright 2020 Open Source Hardware Engineering

%

% Redistribution and use in source and binary forms, with or without modification,

% are permitted provided that the following conditions are met:

%

% 1. Redistributions of source code must retain the above copyright notice, this list of

% conditions and the following disclaimer.

%

% 2. Redistributions in binary form must reproduce the above copyright notice, this list of

% conditions and the following disclaimer in the documentation and/or other materials provided

% with the distribution.

%

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

% FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

% DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

% WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

% WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

%

dataFn='psiPolys.txt';

if ~exist(dataFn,'file')

 error('psiPolys.txt data file is missing.');

end

psiPolys=load('psiPolys.txt');

c1=polyval(psiPolys(2,:),log(As));

c0=polyval(psiPolys(1,:),log(As));

Corr=c1.*sin(psi)+c0;

Scripts/.svn/text-base/PsiPolys.txt.svn-base

 -7.8523874e-003 5.2629122e-002 -9.8092567e-002 1.0992140e+000

 6.4765739e-002 -5.0577257e-001 1.1350849e+000 -2.0714060e+000

Scripts/AwCorr.m

% function AwCorr(Aw,n)

%

% Computes the correction to solenoid self resonant frequency for winding aspect ratio

%

% Aw is the winding aspect ratio -- winding pitch divided by wire diameter

%

% n is the number of turns of wire in the solenoid

%

% Both Aw and n may be arrays, and must either contain the same number of elements,

% or one of them must be scalar.

%

% The result will have the same size as either Aw or n.

%

%

% Copyright 2020 Open Source Hardware Engineering

%

% Redistribution and use in source and binary forms, with or without modification,

% are permitted provided that the following conditions are met:

%

% 1. Redistributions of source code must retain the above copyright notice, this list of

% conditions and the following disclaimer.

%

% 2. Redistributions in binary form must reproduce the above copyright notice, this list of

% conditions and the following disclaimer in the documentation and/or other materials provided

% with the distribution.

%

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

% FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

% DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

% WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

% WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

%

function Corr=AwCorr(Aw,n)

if numel(Aw) > 1

 if numel(n) > 1

 if numel(n) ~= numel(Aw)

 error('Both Aw and n must be the same size, or at least one of them must be scalar.');

 end

 nk=1:numel(n);

 else

 nk=ones(1,numel(Aw));

 end

 Corr=zeros(size(Aw));

 Awk=(1:numel(Aw));

else

 Corr=zeros(size(n));

 Awk=ones(1,numel(n));

 nk=1:numel(n);

end

for k=1:numel(Corr)

 p=AwCorrPoly(Aw(k),3);

 Corr(k)=polyval(p,1/n(k));

end

Scripts/AwCorrPoly.m

function p=AwCorrPoly(Aw,porder)

% poly=AwCorrPoly(Aw,porder)

%

% returns polynomial in 1/n for the winding aspect ratio Aw

% correction at a specified value of winding aspect ratio.

% Polynomial order (porder) is optional and defaults to 2.

% Values above 3rd order are not recommended.

% if supplied, plotIt gives a figure number to plot the polynomial

% fit.

%

% Uses values of 'n' and 'polys' stored in the file AwCorrPolys.mat

%

%

% Copyright 2020 Open Source Hardware Engineering

%

% Redistribution and use in source and binary forms, with or without modification,

% are permitted provided that the following conditions are met:

%

% 1. Redistributions of source code must retain the above copyright notice, this list of

% conditions and the following disclaimer.

%

% 2. Redistributions in binary form must reproduce the above copyright notice, this list of

% conditions and the following disclaimer in the documentation and/or other materials provided

% with the distribution.

%

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

% FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

% DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

% WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

% WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

%

if numel(Aw) > 1

 error 'Aw must be scalar';

end

load 'AwCorrPolys.mat';

if numel(n) ~= size(polys,1)

 error 'Error in AwCorrPolys.mat data file: numel n must match num rows polys';

end

if nargin < 2

 porder=2;

end

corr=zeros(size(n));

x=1/acosh(Aw);

clear xlbl;

m=numel(n);

for k=1:m

 corr(k)=polyval(polys(k,:),x);

 xlbl{k}=sprintf('%1.0f',n(m-k+1));

end

xlbl{m+1}='\infty';

x=1./n;

y=corr;

p=polyfit(x,y,porder);

%fitErr=(polyval(p,x)-y)./y*100;

%stdErr=std(fitErr);

%maxErr=max(abs(fitErr));

Scripts/AwCorrPolys.mat

n:[8x1 double array]

polys:[8x4 double array]

Scripts/EstimateSRF.m

% function srf=EstimateSRF(D,n,d,p)

%

% Estimates the self-resonant frequency of air-core single-layer solenoids

%

% D : Inside diameter of the solenoid winding (meters)

% n : Turn count

% d : Wire diameter (meters)

% p : Winding pitch -- distance between adjacent turns (meters)

%

% If an argument is an array, then all other arguments must either be

% scalar, or an array of the same size.

%

%

% Copyright 2020 Open Source Hardware Engineering

%

% Redistribution and use in source and binary forms, with or without modification,

% are permitted provided that the following conditions are met:

%

% 1. Redistributions of source code must retain the above copyright notice, this list of

% conditions and the following disclaimer.

%

% 2. Redistributions in binary form must reproduce the above copyright notice, this list of

% conditions and the following disclaimer in the documentation and/or other materials provided

% with the distribution.

%

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

% FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

% DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

% WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

% WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

%

function srf=EstimateSRF(D,n,d,p)

c=299792458; % speed of light in vacuum (m/s)

L=n.*p;

As=L./D;

Aw=p./d;

psi=atan(p./(pi*D));

lw=pi*n.*D;

%

% Compute the Normalized SRF

% It is the product of initial estimate and two corrections,

% one for winding angle and the other for winding aspect ratio.

%

Fn=initialFn(As).*PsiCorr(psi,As).*AwCorr(Aw,n);

%

% The SRF estimate is equal to the frequency at which the total

% wire length is 1/2 wavelength in free space, multiplied by the

% above-computed nomalized SRF (Fn).

%

srf=c*Fn./(2*lw);

Scripts/FnPoly.txt

 0.0000000e+000 3.0000000e+000 8.1824033e-003 6.9429670e-002 2.6884917e-001 8.2533218e-001

 2.0000000e+000 5.0000000e+001 0.0000000e+000 1.6105695e-003 4.2509058e-001 7.4552192e-001

Scripts/initialFn.m

% function Fn=initialFn(As)

%

% Computes the inital resonant frequency estimate as a function of solenoid aspect ratio

% which is length divided by inside diameter of the windings.

%

% The result multiplies the frequency at which total solenoid wire length is exactly

% one-half wavelength in free space.

%

% Copyright 2020 Open Source Hardware Engineering

%

% Redistribution and use in source and binary forms, with or without modification,

% are permitted provided that the following conditions are met:

%

% 1. Redistributions of source code must retain the above copyright notice, this list of

% conditions and the following disclaimer.

%

% 2. Redistributions in binary form must reproduce the above copyright notice, this list of

% conditions and the following disclaimer in the documentation and/or other materials provided

% with the distribution.

%

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

% FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

% DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

% WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

% WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

%

function Fn=initialFn(As)

dataFn='FnPoly.txt';

if ~exist(dataFn,'file')

 error('The data file FnPoly.txt is missing');

end

%

% data file contains multiple rows.

% each row contains two range values followed by polynomial coefficients.

% the range values are min/max values of As over which the polynomial in that row is valid.

% ranges specified in successive rows are expected to overlap

%

a=load('FnPoly.txt');

rng=a(:,1:2);

p=a(:,3:end);

%

% modify overlapping ranges so that they don't overlap and change-over at center of the overlap.

%

for k=2:size(rng,1)

 m=(rng(k-1,2)+rng(k,1))/2; % m is the center of the range overlap

 rng(k-1,2)=m;

 rng(k,1)=m;

end

Fn=zeros(size(As));

%

% for each range, find the entries in the As array that fit within that range,

% and evaluate the polynomial for those As entries.

% Any As values which lie outside the range of all data rows will not be used, and

% an estimate of zero will be returned for them in the Fn array.

%

for r=1:size(rng,1)

 k=find((As >= rng(r,1)) & (As <= rng(r,2)) & (Fn == 0));

 Fn(k)=polyval(p(r,:),log(As(k)));

end

Scripts/PsiCorr.m

function Corr=PsiCorr(psi,As)

% y = PsiCorr(psi,As)

%

% Computes the winding angle correction to the estimate for self-resonant frequency.

%

% psi winding pitch angle in radians

% As solenoid aspect ratio (L/D)

% returns the multiplicative correction for the given winding pitch angle

%

%

% Copyright 2020 Open Source Hardware Engineering

%

% Redistribution and use in source and binary forms, with or without modification,

% are permitted provided that the following conditions are met:

%

% 1. Redistributions of source code must retain the above copyright notice, this list of

% conditions and the following disclaimer.

%

% 2. Redistributions in binary form must reproduce the above copyright notice, this list of

% conditions and the following disclaimer in the documentation and/or other materials provided

% with the distribution.

%

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

% FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

% DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

% WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

% WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

%

dataFn='psiPolys.txt';

if ~exist(dataFn,'file')

 error('psiPolys.txt data file is missing.');

end

psiPolys=load('psiPolys.txt');

c1=polyval(psiPolys(2,:),log(As));

c0=polyval(psiPolys(1,:),log(As));

Corr=c1.*sin(psi)+c0;

Scripts/PsiPolys.txt

 -7.8523874e-003 5.2629122e-002 -9.8092567e-002 1.0992140e+000

 6.4765739e-002 -5.0577257e-001 1.1350849e+000 -2.0714060e+000

